NSQF Qualification File – IoT Data Analysis

Detailed Curriculum

Section-1

Detailed Syllabus of Course

S.			Durat	tion	
Ν	Module Title	Topics	(Hou	rs)	Learning Outcome
0			Theory	Lab	
1.	Introduction to IoT & Python Programming	 Introduction to IoT: Evolution of IoT, History & trends that have led to IoT, Applications and Use Cases of IoT, Reference Architecture of IoT, layers and protocols Introduction to Linux Operating System: Basics of Linux OS, File System & Management Process Intro to Text based (shell) & GUI based interface for Linux distribution. Python Programming Fundamentals: An Introduction to Python Beginning Python Basics Python Program Flow Functions& Modules Exceptions Handling Classes in Python 	40	30	 After successful completion of the module, the students shall be able to: Understand the evolution of IoT, reference architecture, building block and challenges Capable of Programming with Python Able to understand the Object-Oriented Programming concepts
2.	Programmin g with MCU	 Introduction to ARM microcontroll Overview of ARM architecture Programming model, operation modes, Memory model, Bus Interface, Clock, Low power modes, Interrupt handling I/O Interfaces, Application development with ARM controllers. Serial protocols - UART, SPI, CAN and I2C 	er Familie 30	s - 20	After successful completion of the module, the students shall be able to: Develop Embedded application using python Interface Peripherals with ARM Microcontroller s using SPI/I2C & CAN protocols

Annexure - II

3.	IoT Network & Wireless Communicat ion	 IoT Communication Models TCP/IP Stack IoT Layer Protocols Wired & Wireless Networks Network Topologies Common Network Standards- 802.11 & Variants, 802.15 & Variants Contiki OS and 6 LoWPAN – Bridging IPv4 with IPv6 Bluetooth Communication Models Data Exchange Format Application Protocols – CoAP, MQTT Edge Computing 	30	25	After successful completion of the module, the students shall be able to: • Understands the IoT layer protocols, standards and topology' • Simulate networking protocols for wired and wireless networks.
4	IoT GUI Development & Cloud Services	 Introduction to web application development Server side vs Client side programming HTML programming and HTML5 features CSS Introduction IoT Application Development using react.JS Database Management using node.JS Cloud Computing – IaaS, PaaS, SaaS Types of Cloud Deployment Models – Private, Public, Hybrid, Community 	35	35	After successful completion of the module, the students shall be able to: • Develop the applications for edge devices • Deploy Different Types of Cloud for IoT Applications
5.	Statistical Concepts	 ✓ Descriptive & Inferential Statistics, Probability Concepts ✓ Random Variable, Distribution Functions (Discrete and Continuous), Measure of Central Tendency, Deviations, Central Limit Theorem, Proportions, Covariance, Correlation, Estimation, Interval Estimation 	25	10	 After successful completion of the module, the students shall be able to: Understand the mathematical principles required for Data Analytics and Machine Learning.

6.	Data Analytics	 ✓ An Introduction to Data Science and Analytics ✓ Data Analysis Using NumPy ✓ Data Analysis Using Pandas (Series & DataFrame)- Data Cleaning, Missing Data, Feature extraction ✓ Data Visualization – Static, Dynamic & Geographical Visualization 	20	30	 After successful completion of the module, the students shall be able to: Able to use NumPy for Numerical Data Able to use Pandas for Data Analysis Able to use Data Visualization tools for interactive dynamic visualizations
7.	Machine Learning	 ✓ Linear Regression, Supervised Learning (Classification) and Unsupervised Learning (Clustering) algorithms. ✓ Time Series Analysis- (Data Resampling, Data Shifting, Rolling & Expanding), Time Series Forecasting 	20	35	 After successful completion of the module, the students shall be able to: Implement the various Machine learning algorithm using scikit-learn library library on Python.
8.	Project	✓ Done as a group project where the trainees will be working on a real life problems sourced from industry/ start-ups.	0	115	After successful completion of the module, the students shall be able to: • Develop a complete working product /project.
1019	1 mours = 455		200	300	

Recommended	Development Boards - Raspberry Pi
Hardware:	• Sensors–PIR, Ultrasonic, LDR, Soil Moisture, Flame, Accelerometer & Gyro meter
	Camera Module, Sense Hat, Capacitive Touch Screen
	• Wireless Sensor Network Radio and Related Modules with Integrated Antenna
	• Aardvark I2C/SPI Host adapter, I2C/SPI development board, CAN Development board, Komodu CAN Duo Interface
	• Virtual Lab setup for cloud software's and remote access.

Recommended Software:	Ubuntu / Raspbian Proskets
Boitware:	
	• Visual Studio
	• Sublime text
	Anaconda environment
Text Books:	• Let us C by Yashwant Kanetkar.
Text Books:	• Let us C by Yashwant Kanetkar.
	• The Definitive Guide to the ARM Cortex M3, Joseph Yiu,
	Newnes.
	Make: Getting Started with Raspberry Pi:
	• PHP for the Web: Visual QuickStart Guide by Larry Ullman
	• HTML & CSS -Design and Build Websites by Jon Ducket

	υ	5
٠	Practical Statistics for Data	Scientists – By Peter Bruce and
	Andrew Bruce	

- Introduction to Machine Learning with Python: A Guide for Data Scientists By Andreas C. Müller and Sarah Guido
- Python Data Science Handbook By Jake VanderPlas
 Learning Node.js Development: Andrew Mead

React.js Essentials: Artemij Fedosejev

- - - -

•

Reference Books:

٠	Embedded Systems Architecture Programming and Design: Raj
	Kamal, Tata McGraw Hill.
•	Embedded C, Pont, Michael J
•	Embedded Systems an Integrated Approach: Lyla B Das,

- Embedded Systems an Integrated Approach: Lyla B Das, Pearson
- C Programming by Worthington, Steve
 Assembly language Programming ARM Cortex-M3, Vincent Mahout, Wiley
- Embedded Linux: Hardware, Software, and Interfacing, Hollabaugh, Craig.
- ARM System Developer's Guide Designing and Optimizing System Software by: Andrew N Sloss, Dominic Symes, Chris Wright; 2004, Elseiver.
- Cortex M3 Reference manual.
- STM32Ldiscovery datasheets, reference manuals & Application notes.
- HTML5 Black Book
- Essential Math for Data Science: Calculus, Statistics, Probability Theory, and Linear Algebra, by Hadrien Jean
- Build a Career in Data Science, by Emily Robinson and Jacqueline Nolis
- Data Science for Dummies (2nd Edition), by Lillian Pierson
- The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman

Section 2

TRAINER PROFILE

Level: 5

Batch Size: 20 students

No of Trainers: 1

No of demonstrators: 1

Education Qualification	B.E./B. Tech in Electronics/ Electronics & Communication/ Electrical/ Electrical and Electronics/Instrumentation/ Electronics & Instrumentation / Instrumentation & Control /Biomedical /Computer Science/Information Technology
Experience	• Minimum 1 year of experience in the field of IoT/Embedded programming
Technical Skills	 Hands-on Experience in ARM Cortex M4 Programming Expertise in Interfacing Sensors & Peripheral Development of Internet of Things Application Able to Analyze and Process the Data Able to use Data Analytics & Machine Learning tools: Numpy, Panda, Scikit-learn for various applications Build Real-time application using RTOS Porting RTOS to ARM Cortex Microcontrollers Developing Device Drivers for Embedded Linux Application Industrial level hands-on experience through various projects
Other Skills	 Should be able to communicate well in English Good command on regional language Knowledge of working on computers Should be able to prepare lesson plan, deliver the courses through the specified media as per schedule Should be able to aspire the trainees & evaluate and assess the trainees Should be able to monitor progress and give feedback to trainees Should be able to maintain MIS related to training